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Abstract

This paper presents a discussion of the collinearity problem in regression and
discriminant analysis. The paper describes reasons why the collinearity is a problem for
the prediction ability and classification ability of the classical methods. The discussion is
based on established formulae for prediction errors. Special emphasis is put on
differences and similarities between regression and classification. Some typical ways of
handling the collinearity problems based on PCA will be described. The theoretical
discussion will be accompanied by empirical illustrations.
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1. Introduction

Multivariate regression and discriminant analysis are among the most used and useful
techniques in modern applied statistics and chemometrics. These techniques, or rather
classes of techniques, are used in a number of different areas and applications, ranging
from chemical spectroscopy to medicine and social sciences.

One of the main problems when applying some of the classical techniques is the
collinearity among the variables used in the models. Such collinearity problems can
sometimes lead to serious stability problems when the methods are applied
(Weisberg(1985), Martens and Næs(1989)). A number of different methods can be used
for diagnosing collinearity. The most used are the condition index and the variance
inflation factor (Weisberg(1985)).

A number of different techniques for solving the collinearity problem have also been
developed. These range from simple methods based on principal components to more
specialised techniques for regularisation (see e.g. Næs and Indahl(1998)). The most
frequently used methods for collinear data in regression and classification resemble each
other strongly and are based on similar principles.

Often, the collinearity problem is described in terms of instability of the small
eigenvalues and the effect that this may have on the empirical inverse covariance matrix
which is involved both in regression and classification. This explanation is relevant for
the regression coefficients and classification criteria themselves, but does not explain



why and in which way the collinearity is a problem for the prediction and classification
ability of the methods.

The present paper presents a discussion of the reasons why the collinearity is a problem
in regression and classification. The discussion is focussed on prediction and
classification ability of the methods. Some simple ways of handling the problem will also
be mentioned and illustrated by examples. The methods presented are not selected
because they are optimal in all possible cases, but because they are closely linked to how
the problem is formulated and therefore well suited for discussing possible ways of
solving the problem. Other and sometimes more efficient methods will also be
referenced. In particular, we will describe similarities and differences of the effect that
the collinearity has in the regression and classification situations respectively.
Computations on real and simulated data will be used for illustration.

2. The effect of collinearity in linear regression

2.1 Least squares (LS) regression

Assume that there are N observations of a vector ),( ytx  and the purpose is to build a
predictor for the scalar y based on the K-dimensional vector x. Say that x is easier or
cheaper to measure than y. The data used for regression can be collected in the matrix X
and the vector y. Assume that the relationship between X and y is linear. Without loss of
generality we assume that X is centred. We also assume that X has full rank. The model
can then be written as

 eXb1y ++= 0b (1)

The main problem is to estimate the regression vector b in order to obtain a predictor

 bx ˆˆ tyy += , (2)

which gives as good predictions of unknown y’s as possible. Another possible application
is interpretation of b, but here we will focus on prediction. A measure of prediction
accuracy, which is much used, is mean square error (MSE) defined by

  2)ˆ(E)ˆ(MSE yyy −= (3)

The most frequently used method of estimation for the regression vector is least squares
(LS). The sum of squared residuals is minimised over the space of b values. The LS
estimator is convenient to work with from a mathematical perspective and has a very nice
closed form solution

  yXXXb tt 1)(ˆ −=  (4)



The covariance matrix of b̂ is equal to

 12 )()ˆ(COV −= XXb tσ (5)

This can also be written as
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where the p’s are the eigenvectors of XXt  and the λ ’s are the corresponding
eigenvalues.

The predictor ŷ  using the LS estimator b̂  is unbiased with MSE equal to

 2122 )(/)ˆ(MSE σσσ ++= − xXXx ttNy (7)

The first term comes from the contribution of the estimated intercept, which is the
average when X is centred. The last term σ 2 is due to the noise in y for the prediction
sample. Even a perfect predictor will have this error if compared to a measured y value.

Using the eigenvectors and eigenvalues decomposition of XXt , the MSE can be written
as
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Here tk is the score of x along eigenvector k, i.e. k
t

kt px= .

2.2 The effect of collinearity in the X-data

A common situation in many applications of linear models is that there are linear or near-
linear relationships among the x-variables. If the linear relations are exact, the inverse of

XXt  does not exist and no unique b̂ can be produced. In this paper, however, we will
concentrate on the case when X has full rank, i.e situations where a unique mathematical
solution exists for the LS problem.

It is easy to see from (6) that if some of the eigenvalues are very small, the variances of
the regression coefficients become very large.

For the prediction case, however, the situation is somewhat different. Directions with
“small eigenvalues” will not necessarily give large MSE’s. As can be seen from equation
(8), the score values tk relative to the eigenvalues kλ  are the important quantities for the



size of the )ˆ(yMSE . In other words, what matters is how well the new sample fits into
the range of variability of the calibration samples along the different eigenvector axes. As
will be seen below, this fit has a tendency of being poorer for the eigenvectors with small
eigenvalue than for those with larger eigenvalue.

In the following we will use the term prediction leverage for the quantities kkt λ/2  because

of their similarity with the leverages used for x-outlier detection (see Weisberg(1985)).
Note that there is a prediction leverage for each factor k. Note also that the MSE of the
LS predictor is essentially a sum of prediction leverages for the new sample plus two
constant terms.

2.3 Principal component regression (PCR) used to solve the collinearity problem.

One of the simplest ways that the collinearity problem is solved in practice is by the use
of principal component regression (PCR). Experience has shown that this usually gives
much better results than LS for prediction purposes. Note that PCR is not selected
because it is optimal, but because it links easily to the problem discussion above and also
makes it clear in which direction solutions to the problem should be sought. Other and
more sophisticated solutions may sometimes give better results (see e.g. Martens and
Næs(1989)).

The singular value decomposition (SVD) of X, gives the equation

 tUSPX = (9)

The column vectors u of U have sum of squares equal to 1 and are orthogonal. They are
linked to the principal component score matrix T by T = US. The S matrix is a diagonal
matrix with elements equal to the square root of λ (the singular values s). The P is
defined as above, i.e. as the matrix of eigenvectors of XXt .

A regression model for y given U can be written as

 eU1y ++= 0α (10)

Since U is a linear transformation of X, the model (10) is equivalent to the model (1) in
the sense that the two will provide the same LS fit and predicted values. The α0 is equal
to b0 above and the  can be transformed linearly into b. Alternatively, the equation is
sometimes transformed into a regression equation based on the scores T = US, i.e.

 eT1y ++= 0α  (11)

The models (10) and (11) give the same fit as model (1), so the error term e is identical in
all three models.



The PCR is defined as regression of y onto a subset (usually those which correspond to
the larger eigenvalues, λ) of the components/columns of U (or T in (11)). The idea is to
avoid those dimensions, i.e. those columns of U, which cause the instability. Let the
matrix UA be defined as the columns of U corresponding to the A largest eigenvalues of

XXt . The PCR is then defined as the regression of y onto UA .

 fU1y ++= AA0α (12)

Here f is generally different from the error term e above. The estimates of the α’s in

A are found by LS. The PCR predictor PCRŷ  is obtained as

  A
t
Ayy u ˆˆPCR += (13)

The value of uA for a new sample is found from projecting x onto the A first principal
components and by diving the score/projection, t, by the square root of the eigenvalues.
Note that for A = K, the PCR predictor becomes identical to the LS predictor ŷ . In
practice, the best choice of A is usually determined by cross-validation or prediction
testing. The predictor (13) can also be presented as an explicit function of x.

Some researches like to think of the model (12) as regression on so-called latent variables
UA. The standardised scores UA are then thought of as underlying latent variables
describing the main variability of X. More information about this way of viewing the
problem and also other approaches based on the latent variable approach can be found in
Kvalheim(1987) and Burnham, et al(1996).

See Joliffe(1986) for other ways of selecting eigenvectors for regression. Jackson(1991)
discusses several important aspects of using principal components.

2.4. Properties of the PCR predictor.

The variance, bias and the MSE of the predictor PCRŷ  are
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Note again that the 2σ  contribution in (16) comes from the error in y for the prediction
sample. Note also that the PCR predictor is biased as opposed to the LS predictor above.
The only difference between the MSE for LS and PCR is the contribution along the
eigenvectors with small eigenvalue (a=A+1,….,K).

In many practical situations with collinear data, the PCR predictor performs much better
than LS from a MSE point of view. Comparing the MSE formulae for the two predictors,
one can see that the reason for this must lie in the replacement of the variance
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other words, a large variance contribution (for LS) is replaced by a smaller bias
contribution (for PCR).

2.5 Empirical illustration.

In the following we illustrate the above aspects for near infrared (NIR) data which are
usually highly collinear. The data are from calibration of protein in wheat. The number of
samples is 267 (133 calibration, 134 test), and the dimension of the x-vector is 20
(reduced from 100 by averaging).  The α’s for the different factors and the contribution
of the prediction leverages along the different eigenvectors are plotted in Figures 1 and 2.
The prediction ability of PCR for different number of components is presented in Figure
3. As can be seen from the latter, the error is high for small values of A, then it decreases
to a flat level before it increases again. The LS predictor is obtained as the PCR for 20
components. As can be seen, much better results than LS are obtained for PCR using for
instance 10 components.

It is clear from this illustration that

1) The regression coefficients (s'α̂ ) for the smaller eigenvalues are very small (not
significant, Figure 1).

2) The prediction leverage contribution for the smaller eigenvalues is larger than for the
directions with large eigenvalues (Figure 2).

The first point means that the bias for PCR (with for instance 10 components) in this
application is small. The second point shows that the poor performance of LS comes
from the large prediction leverages for the smaller eigenvector directions.

Exactly the same phenomena (1 and 2) were observed in Næs and Martens(1988).

2.6. Discussion.



These two points are also easy to argue for intuitively. The reason for the first point (1)
comes from the fact that the t’s, not the u’s, are in the same scale as the original
measurements, x . In other words, if the different directions in X-space are comparable in
importance for their influence on y, the γ ’s in model (11) will be comparable in size.
Since u is obtained by dividing the score t by the singular value s, the α  is identical to γ
multiplied by s. Since s is very small for the smaller eigenvalues, the corresponding α’s
must also be very small (see also Frank and Friedman(1993)). In other words, the
regression coefficients of the smaller eigenvalues will become small because of the small
variation along the corresponding axes. A possible effect that comes on top of this is of
course that the “smaller eigenvectors” may be less interesting than the rest, i.e. that the
main information about y is in the eigenvector directions with large eigenvalue. In many,
but not all, reasonably planned and conducted experiments, the smallest eigenvalue
directions will be of less interest than the rest.

The other point (2) can be argued for by using formulae for the eigenvector stability
(Mardia et al(1979)). It is clear from these formulae that the eigenvector directions with
small variability are less stable than the rest. This means that their directions can change
strongly from dataset to dataset taken from the same population. This will cause a
tendency for larger prediction leverages.

Note that another consequence of the arguments above is that it usually matters little what
is done to a few large eigenvectors with small values of α. The prediction leverages along
these eigenvectors will be small or moderate and therefore their contribution to the MSE
will typically be relatively small.  Similarly, it is clear that the “small” eigenvector
directions will always be difficult to handle. If such eigenvectors have large values of α,
the prediction ability of any regression method will probably be poor. The most
interesting discussions about differences among possible regression methods (for instance
PCR, PLS, RR etc.)  for solving the collinearity problem should therefore relate to how
they handle of the eigenvectors with intermediate size of the eigenvalues.

3 The effect of collinearity in discriminant analysis

3.1. QDA/LDA

Assume that there are a number of vector-valued observations (x, dimension K) available
for a number of groups, C.  The purpose is to use these data in order to build a
classification rule that can be used to classify future samples into one of the groups. The
training data matrix for group j will be denoted by Xj. The number of training samples in
group j is denoted by Nj. The total number of samples is denoted by N and is defined as
the sum of the Nj’s.

One of the most used methods of discrimination assumes that the populations (groups)
are normally distributed and assumes that there is a probability πj attached to each group.
This probability indicates that prior to the observation of x is taken there is a probability
πj that an unknown object comes from group j.



The so-called quadratic discriminant analysis (QDA) method, which uses the Bayes rule,
maximises the posterior probability that a sample belongs to a group, given the
observation of the vector x. The discrimination rule results in the following criterion if
the distributions within all groups are normal with known means and covariance
matrices: Allocate a new sample (with measurement x) to the group (j) with the smallest
value of the criterion

   jjjj
t

jjL πlog2log)()( 1 −+−−= − xx (17)

In practice, the means and covariances for the groups are unknown and must be estimated
from the data. Usually one uses the empirical mean vectors jx  and the empirical

covariance matrices j
t
jj

tt
jjj N/)()(ˆ x1Xx1X −−= . Then we obtain jL̂  as the direct

plug-in estimate for Lj by replacing all parameters by their estimates. jL̂  can be written as

 jjjj
t

jjL πlog2ˆlog)(ˆ)(ˆ 1 −+−−= − xxxx (18)

As can be seen, jL̂  is a squared Mahalanobis distance plus a contribution from the log of

the covariance matrix minus a contribution from the prior probabilities. Note that when
prior probabilities are equal, the last term vanishes. Note also that when covariance
matrices are equal, the second term vanishes.

If a pooled covariance matrix is used, which is natural when the covariance structure of
the two groups are similar, the method (18) reduces to a linear discriminant function. The
method is called linear discriminant analysis (LDA). This is the method which will be
focused in the computations to follow.

As can be seen, in the same way as for the regression method above, the estimated

criterion jL̂  contains an estimated inverse covariance matrix (1ˆ − ).

3.2 The effect of collinearity in discriminant analysis.

The criterion jL̂  can also be written as
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where jkp  is the k’th eigenvector of the empirical covariance matrix jΣ̂ for group j and

jkλ is the corresponding eigenvalue. The jkt  is the score/coordinate for the new sample

along eigenvector k in group j.



The smallest eigenvalues and their corresponding eigenvectors may be very unstable
(Mardia et al(1979)) and since the eigenvalues are inverted, they will have a very large

influence on jL̂ . The variance of the criterion jL̂  as an estimate of Lj will then obviously

be very large. Note the similarity between this and the first part of the MSE formula for
the LS predictor.

The most important aspect, however,  is usually not the instability of the criterion itself

(either jL̂  in classification or b̂  in regression), but rather the performance of the method

when applied to prediction/classification. The formula (19) shows that it is not the
instability of the criterion itself that matters for the classification power of the method,
but merely the relative size of the scores t (computed for a new sample) compared to the
corresponding eigenvalues of the training set. These quantities were above named the
prediction leverages.

What matters for a classification rule like (19) is that at least some of the principal
component directions with corresponding scores, t, distinguish between the groups. If
directions with no predictive power are known exactly (as they are in (17)), the non-
informative directions will vanish from the criterion. If they are estimated imprecisely (as
they may be in (19)), they will, however, represent noise. Since the small eigenvectors
and eigenvalues may be very imprecise estimates for their population analogues (Mardia
et al(1979)), the noise effect may be more serious for the smaller eigenvalues than for the
larger. If the small population eigenvectors have little predictive power, their estimates

may therefor weaken the classification power of jL̂  in equation (19) substantially. 

3.3. Modifications of QDA/LDA based on PCA

An obvious suggestion for improvement indicated by the PCR method above is then to
use only a few principal components with large eigenvalue in the classification rule
instead of the original variables themselves. This results in the reduced QDA criterion
given by
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Note that this is identical to (19) except that the sums in the squared Mahalanobis

distance and the determinant is up to A instead of up to K. Thus, jL̂  is reduced to a

criterion that is a sum of contributions along the eigenvectors with largest variance. In

other words, the suggestion (20) solves the large variance problem of the criterion jL̂ .



Note that in the same way as jL̂  is an estimate of jL , PCˆ
jL  is an estimate of a population

analogue (here denoted by PC
jL ).

Again, we will stress that the choice of illustration method is here made based on its close
relation to the problem formulation above. It is a good method and indicates clearly in
which directions solutions should be sought, but in some cases other and more
sophisticated methods can sometimes perform better (see e.g. Indahl et al(1999) for a
comparison of various classification methods on NIR data).

In the formula (20), the PCA is run for each group separately (QDA). If a joint
covariance matrix is used, the PCA is run on the pooled covariance matrix (LDA)
instead.

3.4. Properties of the PCA based approach and some alternatives.

The above modification of QDA obviously solves the large variance problem since the
effects of the small and unstable eigenvalue directions are eliminated. Therefore, in cases

where the “small eigenvector” directions are unimportant for classification, PCˆ
jL  will

clearly be a good method. Such a situation is depicted in Figure 4a.

In regression, directions with small eigenvalue will always be difficult to handle. In the
following, we will argue that this is not necessarily the case for classification. The
situation we have in mind is the one depicted in Figure 4b. This is a situation where the
directions of small variability for the different groups is responsible for the difference
between the groups. What should then be done with such directions? They are important
for classification, but their estimates are uncertain and can lead to very unstable
classification rules.

One possible way of handling this problem is to use the Euclidean distance within the
space orthogonal to the first stable eigenvectors with large eigenvalues. This technique
avoids the instability problem of the individual eigenvectors since the Euclidean distance
does not divide each direction by its eigenvalue. The instability is solved at the same time
as the “small eigenvectors” are not left out of the criterion.

This technique is used for the well known SIMCA (Wold(1976)) and also for the method
DASCO (Frank and Friedman(1989)).

Another option for solving the collinearity problem which should be mentioned, is the
following: Compute the PCA on the whole data set and use LDA or QDA on the joint
components. By doing this, one transforms the small eigenvector directions in Figue 4b
into directions with substantial variability. Small eigenvector directions for a particular
subgroup are turned into directions with substantial variability for the whole data set.
These directions will have discrimination power and will not represent any problem with
respect to stability.



3.5. Empirical illustration

Two simulated examples will be used to illustrate the ideas presented.

For both data sets, we generated two groups (C = 2) with different means and with the
same covariance matrix. There were 20 X-variables in both cases. The generation of the
X-variables is done by using linear combinations of 5 loading spectra from a NIR
example plus random noise. Each simulated NIR spectrum is generated according to a
factor model

Lx += t                        (20)

Where L is the matrix of 5 estimated NIR spectra, the t consists of uncorrelated Gaussian
variables with variances (8, 4, 1, 0.5, 0.1). The random noise ε has uncorrelated, normally
distributed components with variance 0.0025. The difference between the two examples
is the way the differences between the two groups are generated.

In both cases we generated 10 spectra in each group for training, and 40 for test set
validation (20 from each group).

Note that model (20) is a latent variable model used to generate collinearity. See Section
2.3. and the references given there for a discussion of the relation between collinearity
and latent variable models.

Example 1.

In the first example, the t variables have different means in the two groups, namely (–1,
0.5, 1, 2, 1) for group one and (1, 0.5, 1, 1, 0.5) for group two. As can be seen, the
difference between the groups is related to components 1, 4 and 5, i.e. in the space
generated by eigenvectors with “large eigenvalue” (see Figure 5 for an illustration of the
empirical eigenvalue structure). As can be seen the spectra are highly collinear. The
situation here corresponds to the conceptual situation in Figure 4a.

Example 2.

Here the groups are different with respect to the orthogonal compliment to the 5 “NIR
loadings”. This is achieved in the following way: The constant 0.18 is multiplied by a
6’th loading vector (orthogonal to the other 5) and added to the second group. Both
groups had initially the same means as group one in the first example. The situation
corresponds to Figure 4b. Again the data are highly collinear.

Results.

The two examples were approached by using LDA based on different ways of computing
and selecting components. The methods compared are the following:



a) LDA based on the first 5 and 10 components computed from the pooled covariance

matrix. This corresponds to PCˆ
jL  above based on 5 and 10 components.

b) LDA based on the components 6–10 from the pooled matrix. This corresponds to the

using PCˆ
jL  for those components only.

c) The Euclidean distance for the space orthogonal to the 5 first components.
d) LDA based on principal components computed from the full data set (10

components).

The quality of the different methods is evaluated by the percentage of wrong
classifications (error rate, %) obtained in a prediction testing. The results are given in
Table 1.

As can be seen for Example 1, using the 5 first components gives the best results, i.e PCˆ
jL

based on 5 components is best. This was to be expected, since the 5 most dominant
dimensions are responsible for the discrimination. The components 6–10 give very bad
results. It is also interesting to note that the components 1–10 solution performs poorer
than the first 5 components, showing again that the components 6–10 only introduce
instability. The Euclidean distance was not able to improve the results in this case, since
the main discrimination power lies in the first few components. The solution for the joint

PCA followed by LDA gives the same results as obtained by the PCˆ
jL  with 5 components.

For example 2 the 5 first components give very bad results. The same is true for the
components 6–10 and for 1–10 if Mahalanobis distance is used. All this is to be expected
from the discussion above. The Euclidean distance in the space orthogonal to the first 5
components, however, gives good results. This also supports the discussion above,
namely that even situations as generated in Example 2 can be handled if data are used
properly (Figure 4b). It is also worth noting that also in this case, the joint PCA followed
by LDA gives good results.

3.6 Discussion.

As has been described above, if larger eigenvectors are important and the small

eigenvector directions are irrelevant, the PCˆ
jL  based on the first few components gives

good results. It was also shown that if this is not the case, the problem is difficult to solve
within the framework of LDA. A better approach in such cases is to use Euclidean
distance in the orthogonal compliment to the first few components. The main reason for
this lies in the lack of stability of the eigenvectors with the smallest eigenvalue.

In practice, the Euclidean distance may possibly be accompanied by a Mahalanobis
distance criterion in the space of main variability. This is the case for both SIMCA and



DASCO. Another possibility is to use PCA first on the whole space and use LDA on the
joint components (Figure 4c).

In the discussion for regression it was argued that the importance (bias) of the
eigenvectors often decreases with the size of the eigenvalues (α’s decrease). On top of
this mathematical aspect, there may also be reasons to believe that for most well planned
and conducted experiments the main information is in the larger and intermediate
eigenvector directions. For the classification situation, it is hard to come up with a similar
argument. There is no reason as far as we can see for assuming that the smaller
eigenvalue directions (for a class), neither in the population or in the formula (19), should
be less important than the others in the classification rule.

4. General discussion and conclusion

Collinearity is a problem both for regression and for classification when standard
methods are applied. In both cases, this is related to instability of information along the
small eigenvector directions.

If the relevant information is gathered in the “larger eigenvectors”, the problem can be
solved by using only the first few components from the covariance matrix. This is true for
both regression and classification.

If, however, this is not the case, this approach will give poor results. For regression, such
directions will always be difficult to handle, but for discriminant analysis they can be
handled if used properly. If the “small eigenvector” space is handled as the orthogonal
compliment of the “larger eigenvectors” and if a Euclidean distance is used instead of the
Mahalanobis distance, the problem can be solved.

It should be stressed again that the methods selected for illustration here are not
necessarily optimal. They are good candidates, and selected primarily because of their
close connection to how the problem of collinearity is described. In some cases, other and
more sophisticated (but still closely related) methods can do even better. An obvious and
probably the most used candidate for solving the collinearity problem in regression is
PLS regression (see e.g. Martens and Næs(1989)). This is also a method based on
regressing y onto well selected linear combinations of x. It has been shown that in some
cases, PLS may be more efficient than PCR in extracting the most relevant information in
x by as few components as possible. This has to do with the ability that PLS has in
discarding components with little relation to y. For classification, PLS is also much used.
Instead of using a continuous y variable as regressand, dummy variables representing the
different classes are regressed onto the spectral data x. Again linear combinations with
good ability to distinguish between the groups are extracted. In Indahl et al(1999) it was
shown that a compromise between this so-called PLS discriminant analysis and  the LDA
described above can give even better results. PLS is used to generate relevant
components, and LDA is applied for these components only. Note that this method is
very similar to the method described above where principal components are extracted



before an LDA is used on the extracted components. The only difference is the way the
components are extracted.

In some situations, like for instance in NIR spectroscopy, the problem of collinearity can
sometimes be reduced by using carefully selected transforms. Examples here are the
MSC method proposed by Geladi et al(1985) and the OSC method suggested by Wold et
al(1998). These are methods which remove some of the uninteresting variability which is
causing much of the collinearity in the spectral data. These transforms should always be
considered before the regression or classification is performed.
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Figure captions.

Figure 1. Regression coefficients and 95% confidence limit for their t-tests for the
different principal components.

Figure 2. Prediction leverage for the different components

Figure 3. Root mean square error of prediction (RMSEP) as a function of the 20
principal components.

Figure 4. Different classification situations. In a) is depicted a situation whete the first
PC is the most important direction for discrimination. In b) the second PC is the most
important. In c) both directions are important for discrimination.

Figure 5. Eigenvalues for the 7 first principal components.



Table 1. Error rates (in %) for the different methods used for example 1 and example 2.
Prediction testing is used for validation.

1–5 6–10 1–10      6–>      1–10
Mah Mah Mah   Euclid   Joint PCA

_______________________________________________________________
Example 1  12.5    45.0      17.5       32.5       12.5

Example 2   55      25.0      30.0       10.0       17.5
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